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STIELTJES POLYNOMIALS AND RELATED QUADRATURE 
FORMULAE FOR A CLASS OF WEIGHT FUNCTIONS 

WALTER GAUTSCHI AND SOTIRIOS E. NOTARIS 

ABSTRACT. Consider a (nonnegative) measure du with support in the interval 
[a, b] such that the respective orthogonal polynomials, above a specific index 
X, satisfy a three-term recurrence relation with constant coefficients. We show 
that the corresponding Stieltjes polynomials, above the index 2 - 1, have a 
very simple and useful representation in terms of the orthogonal polynomials. 
As a result of this, the Gauss-Kronrod quadrature formulae for du have all 
the desirable properties, namely, the interlacing of nodes, their inclusion in 
the closed interval [a, b] (under an additional assumption on du), and the 
positivity of all weights. Furthermore, the interpolatory quadrature formulae 
based on the zeros of the Stieltjes polynomials have positive weights, and both 
of these quadrature formulae have elevated degrees of exactness. 

1. INTRODUCTION 

Consider a (nonnegative) measure du with support in the interval [a, b], and let 
irn( () = irn(. ; du) be the respective monic orthogonal polynomial of degree n. The 
corresponding monic Stieltjes polynomial irn1 (* ) = ir1 (* ; du), of degree n + 1, 
can be uniquely defined by the orthogonality condition 

(1.1) jb(7r+1t)tk7rn(t)da(t) = 0, k = 0, 1,... ,n 

(see [2, ?4]), that is, tn+, is orthogonal to all polynomials of lower degree relative 
to the variable-sign distribution du*(t) = 7n(t)du(t). 

Related to ir+1 is the Gauss-Kronrod quadrature formula for du, 

b n n+1 

(1.2) ] f(t)du (t) = S V f (,f) + 5 
* uf (7*) + Rnf(f), 

v=1 

where m = (n)are the zeros of a and the nodes I= *(n) and all weights 
= (in) *=*(n) 

UV = UV UP = , a are chosen such that (1.2) has maximum degree of exactness 
(at least) 3n + 1, i.e., R K(f) = 0 for all f E PI3n++ A necessary and sufficient 
condition for this is that the H be the zeros of ir+1 (see [5, Corollary]). 
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Also connected with 7r+, is the interpolatory quadrature formula 

b n+1 

(1.3) A (t)d=(t) = E (t1) +Rs(f 

where 1r = TA*(n) are the zeros of This kind of quadrature formula was first 
considered by Monegato in [10, Part II.1] for the Legendre measure du(t) = dt on 
[-1, 1]; he conjectured, in this case, that the w* are all positive. 

We now assume that the orthogonal polynomials relative to do satisfy a three- 
term recurrence relation of the following kind, 

rn+1 (t) = (t-an)7rn (t) -!3n7rn (t) I n = 0 1, 2,.. 
(1.4) 

n= a,(X) = ,3 for n > X, 

where an E R, O3n > 0, E N, and 7ro(t) = 1, 7rri(t) = 0. Thus, the coefficients 
an and An, are constant equal, respectively, to some a c JR and /3 > 0 for n > ?. 
Any such measure du- is known to be supported on a finite interval [8, Theorem 
10], say [a, b], and we indicate this, together with the property (1.4), by writing 
do E M( [a, b]. We show in ?2 that, if d- E M( [a, b], then 7n* +( do) has a 
very simple and convenient representation (see (2.13)) in terms of 7rn+,1 (du) and 

n- (. ; do), provided that n > 2 - 1. Subsequently in ? 3, this representation is 
used to derive a number of properties for the Gauss-Kronrod formula (1.2), namely 
that the nodes rH interlace with the nodes T,, all nodes -r,, 'rO are contained in 
[a, b] (under an additional assumption on do-), all weights at,, o* are positive, and 
the degree of exactness is at least 4n - 2? + 2. Moreover, in ? 4 we show that the 
interpolatory formula (1.3) has positive weights and degree of exactness 2n - 1. 

Among the many orthogonal polynomials satisfying (1.4) we mention the four 
Chebyshev-type polynomials and their modifications discussed in Allaway's thesis 
[1, Ch. 4], as well as those associated with the Bernstein-Szego measures. For 
many of these, the Stieltjes polynomials have previously been expressed explicitly 
in terms of Chebyshev polynomials, and the corresponding Gauss-Kronrod formulae 
have been shown to possess the desirable properties mentioned above (see [6, 7, 10, 
11, 12]). In addition, it has been shown in [12] that, for a class of Bernstein-Szegd 
measures, the weights in the interpolatory formula (1.3) are all positive. 

2. THE STIELTJES POLYNOMIALS 

We now present, assuming do E M("') [a, b], the explicit formula for 1rr+4 (. ; do) 
in terms of the respective orthogonal polynomials rrm,(*) = (r ; do). We begin 
with two preliminary lemmas, which play an important role in the subsequent 
development. Both make reference to the expansion of tklrn(t) for k = 0, 1, ... , n 
in terms of the 7rm's, which we write in the form 

k 

(2.1) tk7rn(t) = >j C k rrn+i(t), k = 0, 1,... ,n; n >1. 
i=-k 

Note that the terms rn+i with i < -k are absent in (2.1) because of orthogonality 
of the 7rn. 
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Lemma 2.1. Consider a measure du C M(j" [a, b]. For a given n > ?, the corre- 
sponding Stieltjes polynomial has the form 

(2.2) r*+ 1(t) = rn+i (t) - 0n- 1 (t) 

if and only if in (2.1) we have 

(2.3) Cnl ~~-1k = /Clkj k= 1,2, ... , n. 

Proof. Sufficiency. Assume that (2.3) holds. To prove (2.2), it suffices to show, 
by virtue of (1.1), that 

b 

(2.4) jr[n+l(t) - f7rn-l(t)]tklrn(t)du(t) = 0, k = 1, ... , n. 

For k = 0, this is true by orthogonality. When k = 1, 2,.. , n, we obtain from (2.1), 
(2.3) and orthogonality 

(2.5) 
b 

1Tn+l (t) -f3irn-1 (t)]tk irn(t)du(t) 

b 
= j [7rn+l (t) -7rn- 1(t)] [... +clk7rn+1 (t) +0 k 7rn (t) +fi'k7rn-1 (t) + ]d ]d (t) 

= ci2k [jb 1 (t)du (t) - 02 I 7rb i (t)duT(t)1 

- 1i k (||7rn+il2 - 32||iriFn-1|) 

where 11 fl is the L2-norm. Since n > ?, there follows from (1.4) that On = n+,= , 
or equivalently, 

(2.6) - l7h2Tn+i12 

flirTn-1fl2 HimFnl12 

(cf. [4, Eq. (5.3)]). This yields 

|1rn+l1|_ 2 

117rn-1 || 

which, inserted in the last equality of (2.5), proves (2.4) for k = 1, 2, .. ., n. 
Necessity. Assume that the Stieltjes polynomial is given by (2.2). Then we 

have, by virtue of (1.1) and (2.1), 
b 

[7rn+1 (t)-37rn-1 (t)][ L lkk7rnl )+ klrn )+ ,klrn-l (t)+. * * ]du(t) = 0, 

k=1,2,... ,n, 

which by orthogonality gives 
b b 

cink J r2+ 1(t)du (t) -_ /1k J nr_1 (t)du(t) = 0, k = 1,2, ... ,n 

or equivalently, 

cn K 1+1 |2 _ o k| r11i2 = 0, k = 1, 2,... ,n. 
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In view of (2.6), this yields 

11 2i (OlCn~ -_1k =n -0 k-=1, 2, . .. ,n, 

and since llrn 1l12 =A 0, there follows (2.3). D 

Lemma 2.2. Consider a measure du c MA(')[a,b] with ? = 1. Then in (2.1) 

there holds 

(2.7) =nO~ (2.7) c_ ~~~~~~~i,k = i,k 

fori=O,1,...,k,andallk=O,1,..., n, n>1. 

Proof. We apply induction on n. For n = 1, the induction claim holds trivially 

when k = 0, and by means of (1.4) when k = 1, since 

tir (t) = r2 (t) + ac1r (t) + 03ro(t), 

that is, c1 1 C1 = 

Assume now that the claim is true for some index n, that is, 

(2.8) 

krn Ckkrn+k(t) + Ck1 krn+k-l(t) +***+C2 kirn+i(t) Co k frn(t) 

+ *** + fci'krfn-i(t) + * + pklCk_ n-(k-1)(t) 

+ k ktn-k (t), k = 0, 1, , n; 

we want to prove it for the index n + 1. The expansion of tkirn(t) in terms of the 

7rm's results from applying k times (1.4), solved for the term t7rn. Since (1.4) is 
assumed to hold with ? = 1, we have 

(2.9) t'fm (t) = irm+1 (t) + cirm (t) + /3irm (t) 

for all m > 1. It follows that the coefficients in (2.8) depend only on ae, / and k, and 

not on n. Therefore, replacing n in ir by n + 1 gives the corresponding expansion 
for tkirn+l(t), k = ,1,.... , n, that is, 

(2.10) 

t 7n+l (t)= Ck;klrn+1+k (t) + Ck1,k7rn+l+k-1(t) + *** + cikirn+1+i(t) 

+ * ** + CO k'rn+1(t) + * + 3C ik~rn+l-i(t) 

+ ... + 3k-lC n_1 k+1-(k-1)(t) + /3kCnk -n+ k(t), 

k=0,1,... ,n. 

This proves the induction claim for the index n+ 1 when k = 0, 1, . . . , n. It remains 
to show the claim for k = n + 1. The expansion for tn+17rn+l(t) is obtained by 

multiplying the expansion for tn hrn+ (t) by t, and then applying (2.9) to each term 
in the expansion. This yields, in the notation of (2.1), 

(2.11) 
nf+ 1 Cn+1 + C+1 

{ PCi+i, + ( n i = 1,2,... ., - 1, 
?n+1 _ Cn+1 

cin++1 - + + -1) i = n, 

Cn+1 n+ n,m'in+ 
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and 

(2.12) 

?2+1 ,3~n+1 nt +1C+ 0 C_(+t-1),n + a: Cin + -(iz+1),n1 i = 0)11, . .. n n- 1, 

C-i,n+l = -(n-1),n + nn = 

OC pn+1 = n+l 

From (2.10), with k = n, there follows 

C-i~n = ? Cin+ 0, =O 1,..** n, 

which, combined with (2.11) and (2.12), gives 

*n+1 - qi,,+1l -0 
C-in+l = p 'in+l v i = 1,. . .n + 1. 

This proves the induction claim for k = n + 1, and completes the induction. D 

Theorem 2.3. Consider a measure du c A(`0)[ab]. Then the corresponding 
Stieltjes polynomials are given by 

(2.13) ir*+1(t) = rn+l (t) - /3rn l(t) for n > 2 - 1. 

Proof. In order to prove (2.13), it suffices to show, in view of Lemma 2.1, that 
if (1.4) holds for all n > ?, then so does (2.3) for all n > 2V- 1. To this end we apply 
induction on ?. This requires us to compare the coefficients in the expansion (2.1) 

in the orthogonal polynomials associated with a due c M(" [a, b] with those of 
the analogous expansion in the (different) orthogonal polynomials associated with a 

do"e+, M(+'A [a', b']. This we do by starting from the trivial identity 7rn(t) = 7rn(t) 

for the polynomial in question and then multiplying both sides repeatedly by t, 
whereby on the right we continuously use (2.9) or the analogous relation from (1.4) 
(whichever is appropriate) to express the result in terms of higher- and lower-degree 
polynomials lrr. 

The induction claim for ? = 1 follows from Lemma 2.2 with i = 1. Assume 
now that the claim is true for some index ?; we want to prove it for the index 
? + 1. Replacing ? in (1.4) by ? + 1 has the effect that the recursion coefficients 
ao and /3 may no longer be equal to ae and /, respectively. As a consequence, 
the coefficients Cn k in (2.1) generated by the above procedure will eventually 
change as well. In order to prove the induction claim for the index ? + 1, we must 
show that for all n > 2V + 1, the coefficients Cni1k that evolve are not affected 

by the replacement of ? in (1.4) by ? + 1, i.e., ao and O3 do not become involved 
in determining these coefficients. This will be the case for all k = 0, 1, .. ., n - 

since (2.9) still holds for m > ? + 1. When k = n - ? + 1, then ae and O3 enter 
the picture for the first time as parts of the coefficients of ire, 7re1, and they, as 
well as lower-order coefficients aX, 03X with A < X, continue to be involved for the 

remaining values of k = n - + 2, n - + 3, ... , n. When k = n, then a,\, 03A with 
A < ? are involved in the expansion coefficients of 7r2-1, 7r2-2,... ,- ro. Since the 

highest-degree polynomial so affected is 7r2V-, it is clear that when n > 2V + 1, the 

expansion coefficients associated with 7rn- and 7rn+l, that is, Cnik 1 < k < n, are 

independent of aX, 03X with A < K. This proves the induction claim for the index 
? + 1, and completes the induction. D 

The following proposition will be useful in the development of ?3. 
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Proposition 2.4. Consider a measure du E ME () [a, b] and let Tm be the zeros of 
the corresponding orthogonal polynomial trn. Then 

(2.14) 7rn+1(TV) =7rn+i(Tv), v=112,... ,n, 

for all n > 2V- 1. 

Proof. Let n > 2 - 1. First, (2.13) gives 

(2.15) 7r*+1 (Tv) = 7rn+1 (Tv) - i0rn-1 (w ) 

Since Tm is a zero of irn, we have by (1.4) that 

07rn-1 (TV) = -7rn+1 (',) v 

which, inserted into (2.15), yields (2.14). D 

3. GAUSS-KRONROD QUADRATURE FORMULAE 

The Gauss-Kronrod formula (1.2) is said to have the interlacing property if the 
nodes Tm, Tt are real and satisfy, when ordered decreasingly, 

(3.1) < < T1 < T1 

Formula (1.2) is said to have the inclusion property if all nodes mT, T* are con- 
tained in the closed interval [a, b]. Clearly, if (3.1) holds, the inclusion property is 
equivalent to 

(3.2) a < Tn*+ and Hi < b. 

If du c AM [a, b], then trivially a3n -a c, On -* / asn m-* oc, and it follows 
[3, p. 121] that 

(3.3) [o a ,o + 20-] 

is the "limiting spectral interval" of du. It may well be, however, that du has 
support points outside the interval (3.3) (cf. [3, Exercise 4.6, p. 128]), but for 
inclusion results we will assume the following property. 

Property A. The measure du E M('3) [a, b] is such that 

(3.4) a = a-2 , b = a + 2/. 

Before we state and prove the properties of the quadrature formula (1.2) announced 
in ?1, we add another lemma in the spirit of Lemma 2.2 and Theorem 2.3. 

Lemma 3.1. Consider a measure du E M("3) [a, b]. Then in (2.1) there holds, 
for all n > 2V- 1, 

(3 5) cin =0ic n) i = O 1, ... ., n - V + 2. 

Proof. For ? = 1, this is Lemma 2.2 with k = n. The proof for general ? is again 
by induction, very much along the lines of the proof of Theorem 2.3. The details 
are left to the reader. D 

Theorem 3.2. Consider a measure du MA(3) [a, b]. Then the following holds 
(a) The Gauss-Kronrod formula (1.2) has the interlacing property for all n > 

2 - 1. 
(b) If du has Property A, then the inclusion property holds for all n > 2 - 1. 
(c) All weights ad, A* in (1.2) are positive for each > 2 - 1. 
(d) The formula (1.2) has degree of exactness (at least) 4n - 2 + 2 if n > 2 - 1. 
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Remark. In part (b) of this theorem, Property A can be replaced by assuming the 
two inequalities in (3.8). 

Proof. (a) Let n > 2 - 1. Proposition 2.4, in view of the separation property for 
the zeros of ir and 7rn+l (see [13, Theorem 3.3.2]), implies 

(3.6) sign Jr*+i (T.) = sign 7rn+l(TV) = (-1)"v v = 1 2, ... ,n. 

In addition, it is clear that 

lim 7rn+ 1(t) = 00, 
t-0oo 

(3.7) 
lim irn* (t) = (-l)n+l,,. 

t--oO 

From (3.6) and (3.7) there follows that the I* are real and satisfy (3.1). This proves 
the interlacing property. 

(b) Let n > 2 - 1. Since (3.1) is true, the inclusion property comes down to 
showing that (3.2) holds. A necessary and sufficient condition for that is 

(-1)n+17* +,(a) > 0 and ir*+1(b) > 0, 

which, on account of (2.13), is equivalent to 

(3.8) > < rn+l(a) and __< __+l(). 
- ir-i(a) andb) 

Assuming Property A, we now prove both these inequalities. Beginning with the 
second, we set t = b in (1.4), to get, using the second relation in (3.4), 

(3.9) irn+l(b) = 2 /3irn(b)- 03irn-(b), n > ?. 

Dividing both sides of (3.9) by rn(b), and letting qn = irn(b)/irn-1(b), we obtain 

qn+l = 2A/: qn, n > t 

Subtracting qn from both sides gives 

(3.10) qn+l 
- = ______) n >_ 

Since qn > 0 for n > 1, there follows from (3.10) that qn is a decreasing sequence 
for n > ? and hence converges to, say, q as n -* o. Thus, qn > q for n > ?. 

Multiplying both sides of (3.10) by qn, and then taking the limit as n -* o, we 
immediately obtain q = X, hence 

(3.11) qn >- i,0 n > 

Now, 

rn+l(b) rn+l(b) irn(b) = 

irn-l(b) -rn(b) *rn=l(b) 

which by (3.11) yields the second inequality in (3.8). 
For the first inequality, the proof is analogous. One now defines qn by qn = 

irn(a)/irn-i(a) and shows that qn for n > ? is a (negative) increasing sequence 
converging to -AIj, hence, 

fowiht fyn ( fo a> 

from which the first inequality in (3.8) follows as before. 
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(c) The weights a. are given by the formula 

(3.12) UV~ = Al, + 
17n12 

J =12 . 
( 3 . 1 2 ) ~~~~~7rn, (rV ) 7rn*+l1 ( r,TV 

(see [9, Theorem 2]), where AV = A(n) are the weights of the n-point Gauss formula 
relative to du, known to be all positive, and denotes the L2-norm. Also, the 
AV can be represented by 

(3.13) AV = 1(7rn 112( v 1 21,... n 

(see [13, Eq. (3.4.7)]). Let n > 2 -.1. Then (3.12), by virtue of (2.14) and (3.13), 
yields 

1 
(3.14) UV = -AVI v= 1 2,... n, 

2 

from which the positivity of the aV follows immediately. 
The positivity of the a* is equivalent to the interlacing property (see [9, Theorem 

1]) already proved in (a). 
(d) Let n > 2 - 1. To prove that the degree of exactness is (at least) 4n - 2 + 2, 

it suffices to show 

rb 

(3.15) j +1J(t)tk r(t)da(t) = 0, k = 0, 1,. . ., 2n - 2 + 1 

(see [5, Corollary]). By (1.1), this is true for k = 0, 1,... ,n. For the remaining 
values k = n + 1, n + 2, ... ,2n - 2 + 1 we can write (3.15) in view of (2.13) as 

(3.16) 
rb 

jbtk [7rn+ (t) -finr- (t)]tnT rn(t)du(t) = 0, k = 0 1, ... , n-2 + 1. 

By Lemma 3.1, we can write 

(3.17) 
t in(t) = cnn7r2n(t) + * * + cn-2+2,n7r2n-2f+2(t) + ** + cinrn+i(t) 

+ * ** + C~onrn(t) + +... i n/32c -rn-i(t) 

+ + On-2f+2 cn 2+2 nr2-2(t) + ... + C1n nro(t), 

n > 2V-1. 

Similarly, in the expansion 

k+1 

tk[irn+i (t) - /3r-i(t)] = Z ik+1rn+i 
i=-(k+l) 

we have dnk+l = 0 and dn - k dk+l for each i = 1, 2, ... , k + 1, and for 
all k = 0 1, ... , n- 2V+ 1, n > 2V- 1. The proof goes by induction on t. Let 
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? = 1. First, we have from Lemma 2.2 

(3.18) 

tkin-1 (t) = Cknk 7rn-l+k(t) + Cn-1 kn+k1(t) +... + C+lk7rn-l+i+l (t) 

+kCz, k Xn+i(t) + ck n-l+i1(t) + . +.. k CT' rr+ i(t) 

+ Cln-1r(t) + c, 1rrn-(t) + nc-k1rr-2(t) + /3C2c1rn-3(t) 

? * ? -3 lkn-Jrf ( -i-) (t) ? /3ck1-ij(t) 

+ Cn+1 kthn-1 (i+1)(t) + '.. ? + tk)lc+Ik n-1(kl)(t) 

? 3 1k(t), k =0, 1, .. .,n-1, n > 1. 

Since (1.4), with ? = 1, holds for all n > 1, the coefficients in this expansion are 
given in terms of a>, ,B and k only. Therefore, replacing n-1 in rr-l by n+1 gives 
the corresponding expansion for tkrn+i (t), k = 0, 1, .. ., n-1, that is, 

(3.19) 

tkrrn+l (t) = Ck klr7-+1+k(t) + ck_1ik~rrn+1+k-1 (t) + *. + ci+I~k~rr+1+%+1 (t) 

+- Cik 1rr++i+(t) + cjkkrrl+ni1(t) + * * + ci7J krn+3(t) 

+ c~1 k r+2(t) + cO k rn~i(t) ? /53cln1 rr(t) + /32c~nk n1rr(t) 

+ * + i 3il Crn1 1k1 (t) + 3 c 1ik +i(t) 

? /3+ci+ljklrnrl-(i+1)(t) + + Ck-1 k 

+/kck 1-nlk (t) i k = 0,1,... , n-,n 1 

(see also the proof f Lemma 2.2). Adding (3.18) multiplied byi-th to (3.19), we 
get 

tk[Wrn+l(t) 
- 

Irn~lk(t)1 =C Cn1rkn+kl(t) +ck%_1jCrCnik(t) 

+ + (ci7- 3c +l4tk) rn+i(t) + + (crl7J - + c~n)rr+1(t) 

+ c n-1 l 7rn+() + Cn>rnl (t) + .. Cn-17r (t)32c rn-I 

, k+1 n- i-l~-1 + - 17n-i (t 

-_/ Ceknk krtr-(k+1) (t), 

or equivalently, 

tkr+l(t) - /31rr1(t)] = ckik lrrt+k+1(t) + cklklnr+k (t) 

+** + (ci -1 /c)k- +lrn+i(t) +** + (cO k-1 -k3c2k1)r 1(t) 

- /3(c~n1 - /3c~nk1>r(t) - /3 (C_11 k-/3c7~lk)rrfli(t) 

-* * -3kCkjt_1 kfn-(t) -,kln t-(l)tv 
k= 0,1,... ,n-1 n > 1, 

which proves the induction claim for A n= 1. 
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Assume that the claim is true for some index X, that is, 

(3.20) 

tk [rn+ (t) - /3ni -(t)] = dk+l ,k+l1rrn+k+1(t) + * + dik+l17rn+i(t) 

+ * ** + dl,k+17rn+1(t) - Odk+lrFn-l(t)- -07di&k+l1rfli(t) 
_ . .. _ 

k+ 1,k~lk+l1rn-(k+1)(t)i 

k = 0, 1, ... .n-Vf+ 1, n >V2-1; 

we want to prove it for the index ?+ 1. Replacing ? in (1.4) by ?+ 1 has the effect of 
making the recursion coefficients age and /e in general different from ar and A, respec- 
tively. As a consequence, the coefficients in the expansion of tk [jn+ (t) - 37rpn- (t)] 
change as well, and ag and Oe enter these coefficients as k advances. Indeed, 
for k = 0, 1, ... , n - - 1, the coefficients are the same as before the replace- 
ment. When k = n - ?, then ag and Oe enter the scene for the first time as 
parts of the coefficients of ire, 7rej (see also the proof of Theorem 2.3). How- 
ever, n - ? > n - 2 + 1 for ? > 1. Hence, the expansion coefficients in (3.20) 
are independent of age and Oe, and therefore the coefficients in the expansion of 
tk[irn+ (t) - 07rn i(t)], k = 0,1, ... , n - 2 -1, n > 2 + 1, are the same as before 
the replacement of ? in (1.4) by ? + 1. This proves the induction claim for index 
? + 1, and completes the induction. 

Now, (3.16) can be verified by multiplying together the expansions (3.17) and 
(3.20), and by using orthogonality and the fact that 

|1 rn+i II2 
- 

o2i||1rn-i112 = 01 i = 0 11 . .. n-f+1 n > f 

(cf. [4, Eq. (5.3)]). D 

4. INTERPOLATORY QUADRATURE FORMULAE 

In this section we show that, under the assumption du E ME 4 [a, b], for- 
mula (1.3) has real nodes, all included in the closed interval [a, b] (if du has Prop- 
erty A), and positive weights for all n > 2 - 1. In addition, we determine the 
precise degree of exactness of (1.3). 

Theorem 4.1. Consider a measure du E ME(A [a, b] . Then the following holds 
(a) The interpolatory formula (1.3) has real nodes which, if du has Property A, 

are all contained in the closed interval [a, b], for each n > 2 - 1. 
(b) All weights w* in (1.3) arepositive for each n > 2 - 1. 
(c) The precise degree of exactness of (1.3) is 2n - 1 if n > 2 - 1. 

Proof. (a) The assertions follow from Theorem 3.2 (a), (b). 
(b) Setting f (t) = ir+1 (t)/(t - rfT) in the interpolatory formula (1.3), we get 

(4.1) W*- 1 rbqr*(t) ( 
7r4(tI *dJ(t), ,u=1,2,... ,n+1. 

That same substitution in the Gauss-Kronrod formula (1.2) and in the n-point 
Gauss formula relative to du, 

jb n 

f (t)do(t) Azf (Tv) + R G(f)v 
V=1 
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where T = T, are the zeros of ir and A, = A. the Christoffel numbers, gives 

(4.2) jb (t) Zdu (t) E V n+i() + * *j (T;) 
At V=1 Tv 

and 

(43) n+Mj t du(t) = A, __ 
(,T 

At v=11* I' 

respectively. Let n > 2 - 1. Equating the right sides of (4.2) and (4.3), we find, 
in view of (3.14), 

n+1 

(,Tv 

= 
l 

which, inserted into (4.2), yields 

(4.4) X da(t) =2u*i77n*(4) 

Now, (4.1), by virtue of (4.4), implies 

(4.5) W*= 2u*t ,= 1, 2,... ,n +1. 

By Theorem 3.2 (c), the positivity of w* follows. 
(c) The precise degree of exactness of (1.3) is n+ k, where k is the unique integer 

satisfying 
Ib (t( dtj 0 for all pCEPk -1, 

7rn+k (t)P ) ( ) { ( o 0 for some p E Pk 

(see [4, ?1.3]). Now, for n > 2 - 1, we have by orthogonality, in view of (2.13), 
b 

jb * + (t)p(t)du(t) 

b = 0 for all p E Pn-2, 

Ia[7n+ 1 ()-0r 1 ( t) 
]pi 

(t) du(t =- 1 fl112 A 0 for p = 7n1 

Thus, the precise degree of exactness of (1.3) is 2n - 1. D 
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